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Hybrid spiking models
BY EUGENE M. IZHIKEVICH*
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I review a class of hybrid models of neurons that combine continuous spike-generation
mechanisms and a discontinuous ‘after-spike’ reset of state variables. Unlike Hodgkin–
Huxley-type conductance-based models, the hybrid spiking models have a few parameters
derived from the bifurcation theory; instead of matching neuronal electrophysiology,
they match neuronal dynamics. I present a method of after-spike resetting suitable for
hardware implementation of such models, and a hybrid numerical method for simulations
of large-scale biological spiking networks.
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1. Introduction

Some of the most promising models suitable for simulation of spiking dynamics of
neurons are hybrid in nature: they combine a smooth excitable behaviour leading
to the generation of the action potential, often called a spike, and a subsequent
discontinuous reset of state variables due to the spike.
The simplest and the best-known example of such a model is the leaky integrate-

and-fire neuron

C v̇ = gleak(Eleak − v)+ I (t), if v ≥ vthreshold, then v ← c,
where v ∈R is the membrane potential of the neuron, C is the membrane
capacitance, gleak is the leak ohmic conductance and Eleak is the leak reverse
potential. The input current I (t) brings the membrane potential of this linear
model to the threshold vthreshold. Once v crosses the threshold, a spike is said to
be fired, and the membrane potential is reset to a new (subthreshold) value c.
Though technically not a spiking model (it lacks an intrinsic spike-generation
mechanism, and hence is just a ‘threshold’ model), the leaky integrate-and-fire
neuron was a popular model to simulate spiking networks.
Ermentrout (1996) introduced the quadratic integrate-and-fire neuron, which

we write here in the form

C v̇ = k(v − vrest)(v − vthresh)+ I (t), if v ≥ vpeak, then v ← c,
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Figure 1. Voltage reset in (a) the integrate-and-fire model and (b) the simple spiking model
(2.1)–(2.2) (adapted from Izhikevich (2007) with permission).

where vrest and vthresh are the resting and the instantaneous threshold potentials,
respectively (when I = 0), and k > 0 is a parameter. Because the right-hand side
of this differential equation behaves as kv2 for large v, the variable escapes (blows
up) to infinity in a finite time. To avoid simulating ‘infinity’, one clips the voltage
trajectory at some sufficiently large value, vpeak, and resets it to a new value c.
In the original paper, Ermentrout (1996) avoided infinity by transforming the
model into a trigonometric form with the state variable q defined on a circle
(Ermentrout & Kopell 1986), which led many people to call it q-neuron; his
formulation is equivalent to the one above when vpeak = ∞ and c = −∞.
It follows from the bifurcation theory that any dynamical system near a

saddle-node bifurcation on an invariant circle can be converted to this model
by an appropriate change of variables (Ermentrout 1996). Since many cortical
pyramidal neurons exhibit such a bifurcation, the model became an instant
success among modellers. Escaping to infinity corresponds to firing a spike. In
this sense, the model has an intrinsic nonlinear ‘autocatalytic’ (positive feedback)
process responsible for the generation of action potentials, and the parameter
vpeak is not a threshold value as in the leaky integrate-and-fire neuron, but
the peak of the spike. Indeed, the spike has already been initiated and v is
already approaching infinity when v reaches vpeak in figure 1b (contrast it with
the integrate-and-fire model in figure 1a).
This model jump-started a whole new approach towards modelling the

spiking behaviour of neurons—hybrid spiking models—as it combines a smooth
spike-generation mechanism with autocatalytic upstroke of the spike (v →
∞) and a hard ‘after-spike’ reset. This is in stark contrast to traditional
conductance-based models (Skinner 2006) such as the Hodgkin–Huxley model,
which have separate conductance variables that are responsible for upstroke and
downstroke of action potentials. All the variables and parameters in conductance-
based models have definite electrophysiological meaning, and they all could
be measured experimentally, at least in principle. In practice, though, it is
quite challenging to estimate the parameters, as any electrophysiologist would
attest, so many arbitrary choices have to be made based on the assumption
of ‘reasonability’.
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In contrast, the quadratic integrate-and-fire model above and a simple spiking
model (2.1)–(2.2) below have few parameters and they can be tuned to match
quantitatively neuronal responses to various inputs, thereby leading to simulated
behaviour that is indistinguishable from in vitro and in vivo neuronal responses
(Izhikevich 2007). Changing the parameters, one can reproduce the firing
patterns, spiking and bursting behaviour of many neuronal types (figure 2).

2. Derivation of simple model of spiking neurons

Many neuronal models, including conductance-based models, have phase portraits
with nullclines as in figure 3a. The decision to fire or not to fire a spike is made in
the shaded region, which is magnified in figure 3b. Notice that the fast V -nullcline
looks like a square parabola and the slow u-nullcline can be approximated by
a straight line in the shaded region. Moreover, there is a continuous change
of variables that can transform the model in the region into the form with a
quadratic fast V -nullcline and linear slow u-nullcline (Izhikevich 2003, 2007)

C v̇ = k(v − vrest)(v − vthresh)− u + I (2.1)

and
u̇ = a[b(v − vrest)− u] (2.2)

with the after-spike resetting

if v ≥ vpeak, then v ← c and u← u + d, (2.3)

where u is a recovery variable, and a, b, c and d are independent parameters
(the other parameters can be removed by an appropriate rescaling of variables
and time). As in the case of the quadratic integrate-and-fire neuron, the voltage
variable v escapes to infinity in a finite time; this corresponds to V in figure 3a
leaving the shaded square and approaching the right-hand side branch of the
N-shaped V -nullcline, i.e. generating the upstroke of an action potential. Instead
of following the trajectory all the way until it returns to the shaded square, i.e.
instead of simulating the peak and the downstroke of the action potential, the
state variables of the simple spiking model are reset back to the shaded square
instantaneously via equation (2.3); see figure 1. Such an after-spike reset simplifies
the model significantly, yet retains the nonlinear spike-generation mechanism,
excitability, spiking and bursting behaviour. Izhikevich (2007, ch. 8) provides
examples of parameters of the model that simulate many cortical, thalamic and
hippocampal neurons.

3. Other hybrid models

The simple spiking model can be transformed into the form

v̇ = v2 − u + I
and

u̇ = a(bv − u)
Phil. Trans. R. Soc. A (2010)
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Figure 2. Summary of neuro-computational properties exhibited by the simple model (2.1)–(2.2).
The figure is reproduced, with permission, from www.izhikevich.com. (An electronic version of the
figure, the MATLAB code that generates the voltage responses, and reproduction permissions are
available at www.izhikevich.com; it first appeared in Izhikevich (2004).)
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Figure 3. (a) Phase portrait and (b) its magnification of a typical conductance-based neuronal
model having voltage variable V and a recovery conductance u (reproduced from Izhikevich (2007)
with permission).

by an appropriate rescaling of variables. It belongs to a family of hybrid dynamical
systems of the form

v̇ = f (v)− u + I (3.1)

and
u̇ = a(bv − u) (3.2)

with the after-spike reset (2.3), though the parameters c and d have to be rescaled
too (similarly, the parameters a, b, c and d in Izhikevich (2003) have the same
meaning as those in Izhikevich (2007) but differ in values because of the rescaling).
Here, the function f (v) describes the current–voltage characteristic of the

membrane potential near the threshold (Izhikevich 2007), and it typically looks
like a parabola. Other choices besides f (v)= v2 are possible. For example, one can
take f (v)= |v|3 or f (v)= 1/(1− v)n − v or f (v)= |v|n+ − v with the linear rectifier
function |v|+ = 0 when v ≤ 0 and |v|+ = v when v > 0. Brette & Gerstner (2005)
suggested the adaptive exponential integrate-and-fire model with f (v)= ev − v,
whereas Touboul (2009) suggested the quartic model with f (v)= v4 + 2av.
A whole new class of hybrid spiking models is given by the system of the form

v̇ = f (v)− u(E − v)+ I (3.3)

and
u̇ = a(bv − u), (3.4)

where u plays the role of a conductance and E is its reverse potential, which
could be assumed to take values ±1 or 0 after appropriate rescaling. Sometimes,
it makes sense to use a nonlinear equation for u̇ (Izhikevich 2007). As long as
f (v) scales as v1+3 for some 3 > 0 when v → ∞, the voltage variable escapes to
infinity in a finite time and all the hybrid models above can serve to simulate a
spike-generation mechanism with the reset equation (2.3).
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4. Hardware implementation: slow variable reset (parameter d)

It is relatively straightforward to implement equations (2.1)–(2.2) in a digital
or analogue circuit. The after-spike reset of u by a constant d in equation (2.3)
takes into account the action of high-threshold outward conductances that are
activated during the spike and affect the timing of the following spikes. The reset,
however, poses an engineering problem: implementing such a hard reset requires
a disproportionately large number of transistors relative to the rest of the circuit,
which is a limiting factor for large-scale neuromorphic hardware. Fortunately, the
model allows a shortcut that removes the need for such a reset completely, thereby
resulting in slimmer and faster hardware implementations.
Touboul (2009) pointed out that the behaviour of u is sensitive to the value

of the parameter vpeak. Such a sensitivity arises owing to the fact that the slow
variable u blows up to infinity too during the spike, i.e. while the fast variable
v approaches infinity. This is not the case for the exponential integrate-and-fire
model, where u stays bounded when v → ∞. In fact (Touboul 2009), the slow
variable is bounded for any other spiking model where the right-hand side of the
voltage equation scales as v2+3 for some 3 > 0 when v → ∞, i.e. it is faster than
the square. The simple model (2.1)–(2.2) is thus unique.
Let us take advantage of this unique feature of the model: instead of stopping

v at vpeak and then resetting u by a constant d, we can allow v to increase beyond
vpeak until u is increased by d owing to the dynamics of equation (2.2). That is,
we can move the parameter vpeak up so as to allow the slow variable to grow to
the desired ‘after-spike’ value on its own.
The amount of adjustment of vpeak depends on the other parameters of the

model. If one wants to remove the resetting of u by d, the new peak value is
approximately vpeakedk/(abC ) (derived elsewhere), but its precise value could be
obtained numerically for any given parameter set. In fact, the simple spiking
model (2.1)–(2.2) can be rewritten without the recovery variable reset entirely
(i.e. d = 0), but treating vpeak as the fourth independent parameter (after a, b
and c). Such a model would result in a slim hardware implementation.

5. Simulation methods

In this section, we present a few useful methods for effective simulation of the
spiking model (2.1)–(2.2); the methods would also work for other types of hybrid
spiking models. Typically, large-scale simulations are implemented using the
explicit forward Euler method of the form

v(t + t)= v(t)+ t{k[v(t)− vrest][v(t)− vthresh] − u(t)+ I (t)}
C

(5.1)

and
u(t + t)= u(t)+ t{a[b(v(t)− vrest)− u(t)]} (5.2)

with the time step, t, often taken to be t = 1 ms. One can also use v(t + t) instead
of v(t) in the right-hand side of equation (5.2), as the new value of v is already
known from the first equation.
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Figure 4. Detection of the crossing of the value vpeak, which corresponds to firing a spike, via a
linear interpolation.

There are two major issues with this method: detecting the crossing of vpeak
corresponding to the peak of the spike and dealing with it, and numerical
instability due to strong synaptic conductances.

(a) Detecting vpeak crossing

As seen in §4, it is important to detect the crossing of the value vpeak so that
the slow variable u is adequately modified and the timing of the spike is registered
appropriately. A straightforward though highly inefficient way is to use a really
small adaptive time step. Instead, we use a large time-step simulation, but do
extra work when the neuron fires a spike.
Once the voltage value v(t + t) is above vpeak, detected by a simple if–

then statement, we use linear interpolation to determine the intermediate time
(between t and t + t) where the crossover actually occurred (figure 4)

tpeak = t + vpeak − v(t)
v(t + t)− v(t)

.

(Nonlinear interpolation methods would also work, though they would require
more computations per spike, and possibly extra memory requirement to store
previous values of v.) The slow variable is then updated according to equation
(5.2), but instead of t, we use the smaller value tpeak − t. Thus, the slow variable
u endures only partial update. One can use the value of v from the previous time
step, v(t), the peak value vpeak or a combination of these values in equation (5.2).

(b) Avoiding numerical instability

When simulating realistic neuronal networks, the term I in the simple
model denotes the sum of all input currents. In particular, it includes the
synaptic current

Isynaptic(t)=
∑

i

gi(t)(Ei − v),

where gi(t) is the time-varying conductance and Ei is the reverse potential for a
particular synaptic current i, e.g. i = NMDA, AMPA, GABAA and GABAB. It
Phil. Trans. R. Soc. A (2010)
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is convenient to rewrite the synaptic term in the form

Isynaptic(t)= g(t)[E(t)− v],
where g(t)= ∑

gi(t) is the total conductance and E(t)= ∑
(gi(t)Ei)/g(t) is the

total reverse potential.
For the sake of clarity and to emphasize the synaptic term, we will rewrite the

voltage equation in the model (2.1)–(2.2) in the more general form

v̇ = f (v, u)+ g(t)[E(t)− v] + I . (5.3)

To simulate this equation efficiently, one often employs the simplest numerical
method—the explicit forward Euler method—with the time step t = 1ms:

v(t + t)= v(t)+ t{f (v(t), u(t))+ g(t)[E(t)− v(t)] + I }. (5.4)

This, however, may result in numerical instabilities often seen as zig-zag solutions
illustrated in figure 5a. Indeed, positive values of g(t) push the membrane
voltage towards the reverse potential E(t). However, when g(t) is large, the term
tg(t)[E(t)− v(t)] in equation (5.4) becomes large, resulting in overshoot and
divergence from E(t). Notice that, no matter how small the simulation step t is,
the conductance variable could always become so large as to create the instability.
The standard way to avoid the numerical instability is to use either very small
adaptive time step t or more accurate numerical methods, such as implicit Euler
methods or high-order Runge–Kutta methods. These, however, slow down the
simulation considerably.
Since the numerical instability is caused by the linear term, one can use the

hybrid numerical method

v(t + t)= v(t)+ t{f (v(t), u(t))+ g(t)[E(t)− v(t + t)] + I }
that combines the simplicity and efficiency of explicit methods and the numerical
stability of implicit methods. Notice that the right-hand side contains the present
(already known) value of the voltage variable, v(t), as well as its future (as yet
unknown) value v(t + t). However, the dependence on v(t + t) is linear, and the
equation can be solved for v(t + t) :

v(t + t)= v(t)+ t{f (v(t), u(t))+ g(t)E(t)}
1+ tg(t)

, (5.5)

resulting in an efficient yet stable method illustrated in figure 5b.

6. Discussion

Hybrid models of spiking neurons turned out to be an invaluable tool for large-
scale realistic simulations of brain models. For example, in 2005 Izhikevich
simulated a thalamo-cortical system with six cortical layers, three thalamic nuclei
and 22 different neuronal types, having the size of the human brain, i.e. 1011
neurons and almost one quadrillion synapses (http://www.izhikevich.org). A
smaller network of only one million neurons with multi-compartment dendritic
trees and human white-matter anatomy is described in Izhikevich & Edelman
(2008). Each dendritic compartment was simulated using the same simple spiking
model with an appropriate choice of parameters to reproduce slow dendritic
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Figure 5. Strong synaptic conductances cause numerical instability (seen as the zig-zag solutions)
if the simple model is simulated using the forward Euler method with a large time step t = 1ms.
Shown are simulations of the voltage equation v̇ = v2 + g(−1− v), v(0)= 0.5, with three different
levels of the conductance g: (a) using the method v(t + t)= v(t)+ t{v(t)2 + g(−1− v(t))}, and
(b) using the hybrid method v(t + t)= v(t)+ t{v(t)2 + g(−1− v(t + t))}, expressed in the form
v(t + t)= [v(t)+ t{v(t)2 − g}]/(1+ g), with (i) g = 0.2, (ii) g = 0.7 and (iii) g = 1.0.

excitability, forward- and back-propagating spikes. Such simulations would not be
possible with conductance-based Hodgkin–Huxley models unless one has access
to supercomputing resources.
In such large-scale brain models, the emphasis is on faithful reproduction

of neuronal dynamics with the view to understand neural computations.
Nevertheless, one can still use hybrid spiking models to understand the
contribution of various ionic channels and conductances to neural computations
and brain dynamics. For example, to model the effect of pharmacological
manipulation of, say, delayed rectifier K channels, one needs to fit the parameters
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of the simple spiking model using recordings of control (normal) neurons and
neurons manipulated by the pharmacological agent. These would result in two
parameter sets, which then should be used in large-scale simulations to study the
effect of pharmacological agents on brain dynamics.
While simulating large-scale brain models, there is a natural simulation step

of 1ms for all communications between neurons. This step is sufficiently small
in comparison with the membrane time constant (a few milliseconds for most
neurons) and with the axonal conduction delays (up to tens of milliseconds for
cortico-thalamic and cortico-cortical (contralateral) connections), yet it is quite
large from the numerical method point of view. Technically, the system (5.1)–(5.2)
should not even be treated as being a discrete-time approximation of model
(2.1)–(2.2), but rather as being an independent map-based neuronal spiking
model on its own. No wonder such mappings are prone to become unstable when
synaptic conductances are too strong. The hybrid simulation method proposed
in §5b is probably the simplest and the most effective method resulting in stable
dynamics. Combined with the procedure of dealing with crossing the peak of the
spike (§5a), the simulation would not need to use small adaptive time steps or
higher-order numerical methods.
Analogue hardware implementations, on the other hand, have their own

constraints. An unexpectedly severe one is the requirement to reset the slow
variable u by a constant d after each spike. The method described in §4 removes
this requirement, thereby cutting down on the number of transistors needed to
implement the simple spiking model.
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